
pygobnilp Documentation

James Cussens

Sep 27, 2020

Contents:

1 The Gobnilp class 1

2 The BN class 19

3 The MN class 23

4 The Data class 25

5 The DiscreteData class 27

6 The AbsDiscreteLLScore class 29

7 The DiscreteLL class 31

8 The DiscreteBIC class 33

9 The DiscreteAIC class 35

10 The BDeu class 37

11 The ContinuousData class 39

12 The AbsGaussianLLScore class 41

13 The GaussianLL class 43

14 The GaussianBIC class 45

15 The GaussianAIC class 47

16 The GaussianL0 class 49

17 The BGe class 51

18 Functions in the gobnilp module 53

19 Indices and tables 55

Python Module Index 57

i

Index 59

ii

CHAPTER 1

The Gobnilp class

class pygobnilp.gobnilp.Gobnilp
Subclass of the Gurobi Model class specific to learning Bayesian networks. See documentation for the Gurobi
Model class for all methods not documented here.

exception StageError
Raised when a method is called at the wrong stage of learning.

exception UserConstraintError
Raised when there is a problem with a user-defined constraint.

__init__()
Initialise a Gobnilp object

absolute_generation_difference
Dictionary of absolute generation difference variables (if these variables have been created, by default they
are not)

Assuming the appropriate constraints have been added, if it exists
absolute_generation_difference[v1,v2] is the absolute value of
generation_difference[v1,v2].

Raises Gobnilp.StageError – If no absolute generation difference variables have been
created

Type dict

add_basic_constraints()
Adds the most useful constraints

Adds the constraints added by the following methods:

• add_constraints_oneparentset

• add_constraints_setpacking

• add_constraints_arrow_family

• add_constraints_arrow_adjacency

1

https://www.gurobi.com/documentation/9.0/refman/py_model.html
https://www.gurobi.com/documentation/9.0/refman/py_model.html
https://www.gurobi.com/documentation/9.0/refman/py_model.html

pygobnilp Documentation

• add_constraints_clusters

add_basic_variables()
Adds the most useful Gurobi MIP variables

Adds the variables added by the following methods:

• add_variables_family

• add_variables_arrow

• add_variables_adjacency

Arrow and adjacency variables are given a higher branching priority than family variables to encourage a
balanced search tree.

add_constraints_4b()
Adds “4B” constraints.

All possibly useful 4B constraints are created but these are stored as lazy constraints with a lazy setting of
3 which means that a 4B constraint is pulled into the MIP model only when they cut off the current linear
relaxation solution (or integer solution).

See Bayesian Network Structure Learning with Integer Programming: Polytopes, Facets and Complexity
(Cussens et al, JAIR) for details

add_constraints_absgendiff()
Adds constraints linking generation difference variables to absolute generation difference variables

add_constraints_arrow_adjacency()
Add constraints that there is an adjacency between v1 and v2 in the undirected skeleton if there is either
an arrow from v1 to v2, or an arrow from v2 to v1 in the DAG

add_constraints_arrow_family()
Adds constraints linking arrow variables to family variables

If pa is not a parent of ch in any family then the corresponding arrow variable ch<-pa is simply removed.

add_constraints_arrow_total_order()
Adds constraints linking arrow variables to total order variables

add_constraints_bests()
Add the constraint that at least one BN variable has its best scoring parent set selected

add_constraints_choose_best_for_order()
Adds the constraint that the highest scoring parent set should be chosen whenever whenever the total order
variables indicate that doing so would not cause a cycle

add_constraints_chordal()
Adds simple constraints to rule out non-chordal DAGs i.e. those without v-structures (aka immoralities)

Constraints are roughly of this sort: a<-{b,c} + b<-{a,c} + c<-{a,b} <= a-b

add_constraints_clusters(cluster_cuts=True, matroid_cuts=False, ma-
troid_constraints=False)

Adds cluster constraints

For any cluster of BN variable, the cluster constraint states that at least one element in the cluster has no
parents in that cluster.

These constraints are always added lazily, since there are exponentially many of them.

Parameters

2 Chapter 1. The Gobnilp class

https://jair.org/index.php/jair/article/view/11041/26213
https://jair.org/index.php/jair/article/view/11041/26213

pygobnilp Documentation

• cluster_cuts (bool) – If True then cluster constraints are added as cuts (i.e. as soon
as the linear relaxation is solved). If False, we wait until a candidate integer solution is
found.

• matroid_cuts (bool) – If True then cuts corresponding to rank 2 matroids are also
added.

• matroid_constraints (bool) – If True then constraints corresponding to rank 2
matroids are added when an integer solution corresponding to a cyclic digraph is gener-
ated.

add_constraints_cycles()
Adds cycle constraints (on arrow variables)

Since there are exponentially many possible cycles, these constraints are added lazily (via a callback).

add_constraints_gen_arrow_indicator()
Adds constraints stating that an arrow from parent to child means that the child’s generation number is
strictly greater than the parent’s.

add_constraints_gen_index_link()
Adds the constraint linking generation to generation index variables

add_constraints_gendiff()
Adds constraints linking generation difference variables to generation variables.

add_constraints_genindex()
Adds the constraint that each variable has exactly one generation index and that each of these indices is
distinct

add_constraints_kbranching(k=0)
Adds a constraint so that the learned BN is a k-branching.

A DAG is a branching if each child has at most one parent. A DAG is a k-branching if there is a set of at
most k edges the removal of which results in a branching

Parameters k (int) – The value of k

add_constraints_one_dag_per_MEC(dynamic=True, careful=False)
Adds a constraint that only one DAG per Markov equivalence class is feasible.

The constraint is effected by adding appropriate lazy constraints when Gurobi generates a DAG solution.

Parameters

• dynamic (bool) – If True then which DAG is feasible for each Markov equivalence class
is arbitrary (it will be the first one Gurobi comes across). If false then the representative
DAG is fixed (and is determined by the method dec2mag).

• careful (bool) – If True then all the lazy constraints are stored (not just posted) to
ensure that new solutions satisfy them. (The value for careful is ignored if dynamic is
False.)

add_constraints_oneparentset()
Adds the constraint that each child has exactly one parent set.

add_constraints_polytree()
Adds the constraint that the DAG should be a polytree

Constraints (and cuts) ruling out cycles in the undirected skeletong are always added lazily, since there are
exponentially many of them.

Cluster constraints are removed if this constraint added since ruling out cycles in the undirected skeleton
prevents any in the DAG.

3

pygobnilp Documentation

add_constraints_setpacking()
Adds constraints like a<-b,c + b<-a,c + c<-a,b <= 1. That is an example for a “triple”. Also adds similar
constraints for 4-tuples.

add_constraints_sumgen()
Adds the constraint that sum of generation numbers is n*(n-1)/2

add_constraints_total_order(lazy=0)
Adds constraints so that total order variables represent a total order

Parameters lazy (int) – Controls the ‘laziness’ of these constraints by settng the Lazy at-
tribute of the constraints. See the Gurobi documentation

add_forbidden_adjacency(uv)
Add a constraint that a pair of vertices must not be adjacent.

Parameters uv (iter) – Pair of nodes

Raises Gobnilp.UserConstraintError – If the adjacency is also obligatory.

add_forbidden_ancestor(u, v)
Add constraint that there can be no directed path from u to v

Parameters

• u (str) – Start of path

• v (str) – End of path

Raises Gobnilp.UserConstraintError – If the vertices are the same or the directed
path is also obligatory.

add_forbidden_arrow(u, v)
Add a constraint that there can be no arrow between two vertices

Parameters

• u (str) – Head of forbidden arrow

• v (str) – Tail of forbidden arrow

Raises Gobnilp.UserConstraintError – If the vertices are the same or the arrow is also
obligatory.

add_obligatory_adjacency(uv)
Add a constraint that a pair of vertices must be adjacent.

Parameters uv (iter) – Pair of nodes

Raises Gobnilp.UserConstraintError – If the adjacency is also forbidden.

add_obligatory_ancestor(u, v)
Add a constraint that there must be a directed path between specified vertices.

Parameters

• u (str) – Start of path

• v (str) – End of path

Raises Gobnilp.UserConstraintError – If the vertices are the same or the directed
path is also forbidden or would create a cycle.

add_obligatory_arrow(u, v)
Add constraint that there must be an arrow from u to v

Parameters

4 Chapter 1. The Gobnilp class

https://www.gurobi.com/documentation/9.0/refman/lazy.html

pygobnilp Documentation

• u (str) – Head of arrow

• v (str) – Tail of arrow

Raises Gobnilp.UserConstraintError – If the vertices are the same or the arrow is also
forbidden or would create a cycle.

add_obligatory_conditional_independence(a, b, s)
Add a constraint that each BN variable in a must be independent of each BN variable in b conditional on
s.

Parameters

• a (iter) – A set of BN variables

• b (iter) – A set of BN variables

• s (iter) – A set, possibly empty, of BN variables

Raises Gobnilp.UserConstraintError – If a or b is empty or the 3 sets are not disjoint
or the desired conditional independence is not possible (given other constraints).

add_obligatory_independence(a, b)
Add a constraint that each BN variable in a must be independent of each BN variable in b.

Parameters

• a (iter) – A set of BN variables

• b (iter) – A set of BN variables

Raises Gobnilp.UserConstraintError – If the 3 sets are not disjoint or the desired
conditional independence is not possible (given other constraints).

add_variables_absgendiff(branch_priority=0)
Adds variables representing the absolute difference in generation number between each pair of distinct BN
variables.

These variables are constrained to have a lower bound of 1. So as long as constraints are posted connecting
these variables to the generation_difference variables and thus ultimately to the generation variables, then
each BN variable will have a different generation number.

Calling add_constraints_absgendiff ensure that these variables indeed are equal to the absolute
values of generation difference variables.

Generation variables are added with add_variables_gen. Generation difference variables are added
with add_variables_gendiff. See the documentation for these two methods for details of how to
add appropriate constraints.

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the absolute gen-
eration difference variables.

add_variables_adjacency(branch_priority=0)
Adds binary Gurobi MIP adjacency variables to the model

The adjacency variable corresponding to {v1,v2} is set to 1 iff there is an arrow from v1 to v2 or an
arrow from v2 to v1.

To connect these variables appropriately to arrow variables it is necessary to call
add_constraints_arrow_adjacency .

5

pygobnilp Documentation

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the adjacency
variables.

add_variables_arrow(branch_priority=0)
Adds binary Gurobi MIP arrow variables to the model

The arrow variable corresponding to (pa,ch) is set to 1 iff there is an arrow from pa to ch in a learned
BN.

To connect these variables appropriately to family variables it is necessary to call
add_constraints_arrow_family .

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the arrow vari-
ables.

add_variables_family(branch_priority=0, best_first_branch_priority=False)
Adds binary Gurobi MIP family variables to the model

This method should only be called after data (or local scores) have been read in using, for example, a
method such as input_discrete_data

Parameters

• branch_priority (int) – The Gurobi branching priority for the family variables.
This value is ignored if best_first_branch_priority is True.

• best_first_branch_priority (bool) – If True then the branching priority for
the family variables for any given child are (totally) ordered according to local score, with
the higher scoring families given higher branching priority than lower ones.

add_variables_gen(branch_priority=0)
Adds generation variables to the model

A generation number for a variable in a DAG is an integer such that any variable has a generation number
stricty greater than any of its parents.

To connect these variables appropriately to arrow variables it is necessary to call
add_constraints_gen_arrow_indicator.

To set the sum of all generation numbers to n*(n-1)/2 use add_constraints_sumgen.

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the generation
variables.

add_variables_gendiff(branch_priority=0)
Adds variables representing the difference in generation number between distinct BN variables

Generation and generation difference variables are connected appropriately with
add_constraints_gendiff.

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the generation
difference variables.

6 Chapter 1. The Gobnilp class

pygobnilp Documentation

add_variables_genindex(branch_priority=0, earlyfirst=True)
Adds binary variables indicating whether a BN variable has a particular generation number

Parameters

• branch_priority (int) – The Gurobi branching priority for the generation index
variables. (Ignored if earlyfirst==True.)

• earlyfirst (bool) – Generation index variable for low generation numbers have
higher branching priority than those for high generation numbers.

add_variables_kbranching(branch_priority=0, ub=None)
Adds a variable which is the number of arcs that must be deleted for the learned DAG to be a branching.
In a branching each node has at most one parent

Parameters

• branch_priority (int) – The Gurobi branching priority for the generation differ-
ence variables.

• ub (int) – An upper bound for this variable

add_variables_kbranching_ch(branch_priority=0)
Adds variables for recording max(0,|parents|-1) for each child

Parameters branch_priority (int) – The Gurobi branching priority for the generation
difference variables.

add_variables_total_order(branch_priority=0)
Adds binary Gurobi MIP total order variables to the model

The total order variable corresponding to (v1,v2) is set to 1 iff v1 > v2 in the total order associated
with a learned BN. Parents always come before children in the total order.

To connect these variables appropriately to arrow variables it is necessary to call
add_constraints_arrow_total_order.

All these variables are given objective value 0. (This can be overridden using the Obj attribute of the
variable.)

Parameters branch_priority (int) – The Gurobi branching priority for the total order
variables.

adjacency
Dictionary of adjacency variables (if these variables have been created, by default they are)

Assuming the appropriate constraints have been added, adjacency[{v1,v2}] is the adjacency vari-
able indicating that v1 and v2 are adjacent.

Raises Gobnilp.StageError – If no adjacency variables have been created

Type dict

allowed_user_constypes = ('forbidden_arrows', 'forbidden_adjacencies', 'obligatory_arrows', 'obligatory_adjacencies', 'obligatory_ancestors', 'forbidden_ancestors', 'obligatory_conditional_independences')
Constraint types available to users. Used as key values when providing constraints via a dictionary. For
each constraint type there is also a method for adding constraints whose name has add_ as a prefix and is
in the singular.

See also:

input_user_conss_from_dict add_forbidden_arrow add_forbidden_adjacency
add_obligatory_arrow add_obligatory_adjacency add_obligatory_ancestor
add_forbidden_ancestor add_obligatory_conditional_independence

7

pygobnilp Documentation

Type tuple

arrow
Dictionary of arrow variables (if these variables have been created, by default they are)

Assuming the appropriate constraints have been added, arrow[pa,ch] is the arrow variable indicating
that there is an arrow from pa to ch.

Raises Gobnilp.StageError – If no arrow variables have been created

Type dict

before(stage1, stage2)
Is stage1 strictly after stage2?

Parameters

• stage1 (str) – A Gobnilp learning stage

• stage2 (str) – A Gobnilp learning stage

Raises KeyError – If any of the arguments are not the names of Gobnilp learning stages

Returns Whether stage1 is strictly before stage2

Return type bool

between(stage1, stage2, stage3)
Is stage2 strictly after stage1 but not strictly after stage 3?

Parameters

• stage1 (str) – A Gobnilp learning stage

• stage2 (str) – A Gobnilp learning stage

• stage3 (str) – A Gobnilp learning stage

Raises KeyError – If any of the arguments are not the names of Gobnilp learning stages

Returns Whether stage2 is strictly after stage1 but not strictly after stage3

Return type bool

bn_variables
The BN variables (in order)

Type list

bn_variables_index
Maps each BN variable to its index in the sorted list of BN variables

Type dict

child
child[i] is the child in the family with index i.

See also:

get_family_index, parents and family_list.

Type list

clear_basic_model()
Removes variables and constraints added by make_basic_model.

8 Chapter 1. The Gobnilp class

pygobnilp Documentation

dag2mec(dag)
Finds the Markov equivalence class for a DAG

Parameters dag (iterable) – A DAG represented by a collection of (indices for) ‘families’,
where each family is a BN variable together with its parents.

Returns A set of sets which is a sparse representation of the characteristic imset which represents
the Markov equivalence class. If (and only if) a set has value 1 in the characteristic imset
then it is included as an element in the returned set.

Return type frozenset

See also:

Note that the BN variable, its parents and the binary MIP variable for a family can be recovered from its
index using the methods child, parents and family_variable, respectively.

A rough ‘inverse’ of this method is mec2dag.

data
Data associated with the instance

Type pandas.DataFrame

data_arities
Arities of the variables in the data

The order of the arities matches the order of the variables in the data, see: data_variables not the order in
bn_variables (which is always in sorted order).

Raises AttributeError if continuous data being used

Type numpy.array

data_variables
the variables in the data

Variables are in the order supplied by the original data source not the order in bn_variables (which is
always in sorted order).

Type list

family
Dictionary of family variables (if these variables have been created, by default they are)

Assuming the appropriate constraints have been added, family[child][parent_set] is the family
variable indicating that parent_set is the parent set for child.

Raises Gobnilp.StageError – If no family variables have been created

Type dict

family_list
family_list[i] is the family variable for the family with index i. (if these variables have been
created, by default they are)

See also:

get_family_index, child, parents

Raises Gobnilp.StageError – If no family variables have been created

Type list

9

pygobnilp Documentation

family_scores
Dictionary of family scores (aka local scores)

family_scores[child][parentset] is the local score for child having parentset (a
frozenset) as its parents.

Raises Gobnilp.StageError – If no local scores have been created

Type dict

forbidden_adjacencies
If {u,v} is included then an adjacency between u to v is forbidden.

See also:

add_forbidden_adjacency

Type set

forbidden_ancestors
If (u,v) is included then an directed path from u to v is forbidden.

See also:

add_forbidden_ancestors

Type set

forbidden_arrows
If (u,v) is included then an arrow from u to v is forbidden.

See also:

add_forbidden_arrow

Type set

generation
Dictionary of generation variables (if these variables have been created by calling
add_variables_gen)

Assuming appropriate constraints have been added, by, for example, calling the method
add_constraints_gen_arrow_indicator, then generation[v1] is the generation number
for v1.

See Section 3.1.2 of Maximum likelihood pedigree reconstruction using integer programming (Cussens,
2010) for details of how generation variables can be used to rule out cycles in directed graphs.

Raises Gobnilp.StageError – If no generation variables have been created

See also:

• add_variables_gen

• add_constraints_gen_arrow_indicator

Type dict

10 Chapter 1. The Gobnilp class

https://www.cs.york.ac.uk/ftpdir/pub/aig/Papers/james.cussens/wcb10.pdf
https://www.cs.york.ac.uk/ftpdir/pub/aig/Papers/james.cussens/wcb10.pdf

pygobnilp Documentation

generation_difference
Dictionary of generation difference variables (if these variables have been created by calling
add_variables_gendiff)

Assuming the appropriate constraints have been added, by, for example, calling the
method add_constraints_gendiff, then generation_difference[v1,v2] =
generation[v1] - generation[v2]

Raises Gobnilp.StageError – If no generation difference variables have been created

See also:

• add_variables_gendiff

• add_constraints_gendiff

Type dict

generation_index
Dictionary of generation index variables (if these variables have been created, by default they are not)

Assuming the appropriate constraints have been added, if it exists generation_index[v1,pos]
indicates whether v1 has generation number pos

Raises Gobnilp.StageError – If no generation index variables have been created

Type dict

get_family_index
Maps a family to its index

get_family_index[child][parents] is the index for the given family.

See also:

child and parents and family_list.

Type dict

gobnilp_optimize()
Solve the MIP model constructed by Gobnilp

This overrides Gurobi’s optimize method by hard coding in calls to a callback function for adding Gobnilp
specific lazy constraints (and cuts).

input_local_scores(local_scores)
Read local scores from a dictionary.

Once this method has been run, methods for adding MIP variables, such as add_variables_family
and add_basic_variables, can be used.

Parameters local_scores (dict) – Dictionary containing local scores.
local_scores[child][parentset] is the score for child having parents
parentset where parentset is a frozenset.

input_user_conss(consfile)
Read user constraints from a Python module and store them

If consfile is None then this method returns silently.

See also:

allowed_use_constypes

11

pygobnilp Documentation

Such constraints can be read in prior to computation of local scores, and can make that computation more
efficient

Parameters consfile (str/None) – If not None then a file containing user constraints

input_user_conss_from_dict(consdict)
Read user constraints from a dictionary and store them

The keys of the dictionary must be strings each of which should name an allowed constraint type. Each
value should be either (1) a sequence of items where each item is a sequence (perhaps of length one)
providing argument(s) to give to the corresponding “add_..” method. For example, dkt1 (below) would be
an acceptable dictionary (assuming A, B, C, E and F) are BN variables:

dkt1={'forbidden_adjacencies':[['AB'],['BC']],
'obligatory_arrows':[['E','F']]}

or (2) a function which, when given the Gobnilp object, returns a sequence of the same form as in case 1).
For example, dkt2 would be an acceptable dictionary:

def no_arrows(gobnilp):
return ([(v,w) for v in gobnilp.bn_variables for w in gobnilp.bn_

→˓variables if w!=v])
dkt2={'forbidden_arrows':no_arrows}

See also:

allowed_use_constypes add_forbidden_arrow add_forbidden_adjacency
add_obligatory_arrow add_obligatory_adjacency add_obligatory_ancestor
add_forbidden_ancestor add_obligatory_conditional_independence

Such constraints can be read in prior to computation of local scores, and can make that computation more
efficient

Parameters consdict (dict/None) – Dictionary mapping the names of allowed constraint
types to constraints

Raises ValueError – If dictionary contains a key that is not (the name of) an allowed con-
straint type

learn(data_source=None, varnames=None, header=True, comments=’#’, delimiter=None, start=’no
data’, end=’output written’, data_type=’discrete’, score=’BDeu’, local_score_fun=None, k=1,
sdresidparam=True, standardise=False, arities=None, palim=3, alpha=1.0, nu=None, al-
pha_mu=1.0, alpha_omega=None, starts=(), local_scores_source=None, nsols=1, kbest=False,
mec=False, polytree=False, chordal=False, consfile=None, consdict=None, settingsfile=None,
pruning=True, edge_penalty=0.0, plot=True, abbrev=True, output_scores=None, out-
put_stem=None, output_dag=True, output_cpdag=True, output_ext=(’pdf’,), verbose=0,
gurobi_output=False, **params)

Parameters

• data_source (str/array_like) – If not None, name of the file containing the
discrete data or an array_like object. If None, then it is assumed that data has previously
been read in.

• varnames (iterable/None) – Names for the variables in the data. If data_source
is a filename then this value is ignored and the variable names are those given in the file.
Otherwise if None then the variable names will X1, X2, . . .

• header (bool) – Ignored if data is not a filename with continuous data. Whether a
header containing variable names is the first non-comment line in the file.

12 Chapter 1. The Gobnilp class

pygobnilp Documentation

• comments (str) – Ignored if data is not a filename with continuous data. Lines starting
with this string are treated as comments.

• delimiter (None/str) – Ignored if data is not a filename with continuous data. String
used to separate values. If None then whitespace is used.

• start (str) – Starting stage for learning. Possible stages are: ‘no data’, ‘data’, ‘local
scores’, ‘MIP model’, ‘MIP solution’, ‘BN(s)’ and ‘CPDAG(s)’.

• end (str) – End stage for learning. Possible values are the same as for start.

• data_type (str) – Indicates the type of data. Must be either ‘discrete’ or ‘continuous’

• score (str) – Name of scoring function used for computing local scores. Must be
one of the following: BDeu, BGe, DiscreteLL, DiscreteBIC, DiscreteAIC, GaussianLL,
GaussianBIC, GaussianAIC, GaussianL0. This value is ignored if local_score_fun is not
None.

• local_score_fun (fun/None) – If not None a local score function such that lo-
cal_score_fun(child,parents) computes (score,ub) where score is the desired local score
for child having parentset parents and ub is either None or an upper bound on the local
score for child with any proper superset of parents

• k (float) – Penalty multiplier for penalised log-likelihood scores (eg BIC, AIC) or tun-
ing parameter (‘lambda^2) for l_0 penalised Gaussian scoring (as per van de Geer and
Buehlmann)

• sdresidparam (bool) – For Gaussian BIC and AIC, whether (like bnlearn) to count
the standard deviation of the residuals as a parameter when computing the penalty

• standardise (bool) – Whether to standardise continuous data.

• arities (array_like/None) – Arities for the discrete variables. If data_source is a
filename then this value is ignored and the arities are those given in the file. Otherwise if
None then the arity for a variable is set to the number of distinct values observed for that
variable in the data. Ignored for continuous data.

• palim (int/None) – If an integer, this should be the maximum size of parent sets.

• alpha (float) – The equivalent sample size for BDeu local score generation.

• nu (iter/None) – The mean vector for the Normal part of the normal-Wishart prior for
BGe scoring. If None then the sample mean is used.

• alpha_mu (float) – Imaginary sample size value for the Normal part of the normal-
Wishart prior for BGe scoring.

• alpha_omega (float/None) – Degrees of freedom for the Wishart part of the normal-
Wishart prior for BGe scoring. Must be at least the number of variables. If None then set
to 2 more than the number of variables.

• starts (iter) – A sequence of feasible DAGs the highest scoring one of which will be
the initial incumbent solution. Each element in the sequence can be either a bnlearn model
string or an nx.DiGraph instance. If this value is not empty, a local scoring function must
be provided.

• local_scores_source (str/file/dict/None) – Ignored if None. If not None
then local scores are not computed from data. but come from local_scores_source. If a
string then the name of a file containing local scores. If a file then the file containing local
scores. If a dictionary, then local_scores[child][parentset] is the score for
child having parents parentset where parentset is a frozenset.

• nsols (int) – Number of BNs to learn

13

pygobnilp Documentation

• kbest (bool) – Whether the nsols learned BNs should be a highest scoring set of nsols
BNs.

• mec (bool) – Whether only one BN per Markov equivalence class should be feasible.

• polytree (bool) – Whether the BN must be a polytree.

• chordal (bool) – Whether the BN represent a chordal undirected graph (i.e. have no
immoralities).

• consfile (str/None) – If not None then a file (Python module) containing user con-
straints. Each such constraint is stored indefinitely and it is not possible to remove them.

• consdict (dict/None) – If not None then a dictionary containing user constraints.
The dictionary is used as input to input_user_conss_from_dict

• settingsfile (str/None) – If not None then a file (Python module) containing
values for the arguments for this method. Any such values override both default values
and any values set by the method caller.

• pruning (bool) – Whether not to include parent sets which cannot be optimal when
acyclicity is the only constraint.

• edge_penalty (float) – The local score for a parent set with p parents will be re-
duced by p*edge_penalty.

• plot (bool) – Whether to plot learned BNs/CPDAGs once they have been learned.

• abbrev (bool) – When plotting whether to abbreviate variable names to the first 3 char-
acters.

• output_scores (str/file/None) – If not None, then a file or name of a file to
write local scores

• output_stem (str/None) – If not None, then learned BNs will be written to “out-
put_stem.ext” for each extension defined in output_ext. If multiple DAGs have been
learned then output files are called “output_stem_0.ext”, “output_stem_1.ext” . . .

• output_dag (bool) – Whether to write DAGs to any output files

• output_cpdag (bool) – Whether to write CPDAGs to any output files

• output_ext (tuple) – File extensions.

• verbose (int) – How much information to show when adding variables and constraints
(and computing scores)

• gurobi_output (bool) – Whether to show output generated by Gurobi.

• **params – Arbitrary Gurobi model parameter settings. For example if this method is
called with TimeLimit=3, then the Gurobi model parameter TimeLimit will be set to 3

Raises ValueError – If start= ‘no data’ but no data source or local scores source has been
provided

learned_bn
Learned BN (a maximally scoring one if several learned)

Type BN

learned_bns
Learned BNs

Type tuple

14 Chapter 1. The Gobnilp class

pygobnilp Documentation

learned_scores
Learned BNs

Type tuple

local_scores
alternative name for family_scores

make_basic_model(nsols=1, kbest=False, mec=False, polytree=False, chordal=False)
Adds standard variables and constraints to the model, together with any user constraints

Variables added by add_basic_variables. Constraints added by add_basic_constraints.

Parameters

• nsols (int) – Number of BNs to learn

• kbest (bool) – Whether the nsols learned BNs should be a highest scoring set of nsols
BNs.

• mec (bool) – Whether only one BN per Markov equivalence class should be feasible.

• polytree (bool) – Whether the BN must be a polytree

• chordal (bool) – Whether the BN must contain no immoralities

Raises Gobnilp.StageError – If local scores are not yet available.

mec2dag(c, vs=None)
Returns a DAG representative from a Markov equivalence class.

Parameters

• c (frozenset) – A Markov equivalence class represented by a characteristic imset
which is itself (sparsely) represented by the set of all sets with value 1 in the characteristic
imset. This method assumes that c is a valid characteristic imset without any checking.

• vs (iterable) – An ordering for the BN variables which determines the particular DAG
representative returned. If None the ordering determined by Python sort is used.

Returns The DAG represented by a list of family indices, or None if the required families are
not represented.

Return type list/None

See also:

A rough ‘inverse’ of this method is dag2mec.

n
The number of BN variables

Type int

obligatory_adjacencies
If {u,v} is included then an adjacency between u to v is obligatory.

See also:

add_obligatory_adjacency

Type set

obligatory_ancestors
If (u,v) is included then an directed path from u to v is obligatory.

15

pygobnilp Documentation

See also:

add_obligatory_ancestors

Type set

obligatory_arrows
If (u,v) is included then an arrow from u to v is obligatory.

See also:

add_obligatory_arrow

Type set

obligatory_conditional_independences
If (a,b,s) is included, where each is a frozenset, then each BN variable in a must be independent of each
BN variable in b conditional on s.

See also:

add_obligatory_conditional_independence, add_obligatory_independence

Type set

ordered_parentsets
For each child a list of parent sets sorted by local score

Higher scoring parent sets come before lower scoring ones. Each parent set is a frozenset.

Raises Gobnilp.StageError – If no local scores have been created

Type dict

parents
parents[i] is the parent set in the family with index i.

The parent set is a frozenset.

See also:

get_family_index, child, family_list

Type list

rawdata
Raw data associated with the instance

Returns a two-dimensional array with one row for each datapoint (and thus one colun for each variable).

If the data is discrete the array entries are of dtype uint32 and if the data is continuous the entries are of
dtype float64

Type numpy.array

return_local_scores(local_score_fun, palim=3, pruning=True)
Return a dictionary for each child variable where the keys are the child variables and the values map parent
sets to local scores.

Not all parent sets are included. If palim is not None, then only those parent sets of cardinality at most
palim can be included.

16 Chapter 1. The Gobnilp class

pygobnilp Documentation

Also, when pruning=True, a parent set is only included if its local score exceeds that of all its proper
subsets.

local_score_fun should be a function that computes a local score.

Parameters

• local_score_fun (fun/None) – If not None a local score function such that lo-
cal_score_fun(child,parents) computes (score,ub) where score is the desired local score
for child having parentset parents and ub is either None or an upper bound on the local
score for child with any proper superset of parents

• palim (int/None) – If not None then the maximal size of a parent set

• pruning (bool) – Whether not to include parent sets which cannot be optimal.

Returns A dictionary dkt such that dkt[child][parentset] is the local score for child having parent
set parentset (where parentset is a frozenset).

Return type dict

set_bn_variables(bnvars)
Set the BN variables to be a subset of existing BN variables

Parameters bnvars (iter) – A subset of the existing BN variables

Raises ValueError – If bnvars is not a subset of the variables in the data

set_stage(stage)
Manually set the stage of learning

Parameters stage (str) – The desired stage of learning

Raises ValueError – If stage is not among the list of possible stages

set_starts(dags)
Provide a set of ‘starting’ DAGs

The highest scoring of these DAGs will become the initial incumbent in the search for the best DAG. So
the learned DAG will have a score at least as good as the best of these.

This method should be called prior to computing local scores to ensure that the local scores required for
each starting DAG are computed even if parent sets in starting DAGs are bigger than the current limit on
parent sets. (So limits on parent set size do not affect starting DAGs).

Parameters dags (iter) – Collection of DAGS. Each individual DAG must be either a bnlearn
modelstring or a nx.DiGraph object.

sol2fvs()
Extracts the family variables set to true by some Gurobi solution

The solution corresponding to the current value of Gurobi parameter SolutionNumber is used.

Returns A pair of lists. The first list contains the families as (child,parents) tuples,
where parents is a frozenset. The second list contains Gurobi binary MIP variables for
the families.

Return type tuple

stage
Stage of solving

Type str

stages = ('no data', 'data', 'local scores', 'MIP model', 'MIP solution', 'BN(s)', 'CPDAG(s)', 'output shown', 'output written')
A tuple of strings giving Gobnilp’s stages of learning (in order).

17

pygobnilp Documentation

Type tuple

stages_set = frozenset({'local scores', 'CPDAG(s)', 'MIP model', 'no data', 'MIP solution', 'data', 'BN(s)', 'output written', 'output shown'})
The set of Gobnilp’s stages of learning.

Type frozenset

total_order
Dictionary of total order variables (if these variables have been created, by default they are not)

Assuming the appropriate constraints have been added, if it exists total_order[v1,v2] is the total
order variable indicating that v1 > v2.

Raises Gobnilp.StageError – If no total order variables have been created

Type dict

write_local_scores(f)
Write local scores to a file

Parameters f (str/file) – If a string the name of the file to write to (where “-” leads to
writing to standard output). Otherwise a file object.

18 Chapter 1. The Gobnilp class

CHAPTER 2

The BN class

class pygobnilp.gobnilp.BN(*args, **kwargs)
Subclass of networkx.DiGraph. See documentation for networkx.DiGraph for all methods not documented here.

At present this class only implements the structure of a BN - the DAG.

__str__()
Returns a textual representation of the BN

Returns A textual representation of the BN

Return type str

adjacency_matrix()
The adjacency matrix

Returns The adjacency matrix

Return type numpy.matrix

bnlearn_modelstring()
Return a string representation suitable for bnlearn’s “modelstring” function

Returns A string representation of the BN structure (DAG) suitable for bnlearn’s “modelstring”
function

Return type str

compute_compelled(compelled=())
Determines which directed edges are present in all DAGs Markov equivalent to the given DAG (i.e. which
are compelled to have this direction).

Whether an edge has its direction compelled is given by the “compelled” attribute of the edge.

Starting from a initial set of edges whose direction is compelled to be that given in the DAG, the following
3 rules from Koller and Friedman (here shown in Prolog) are used:

%R1
compelled(Y,Z) :- edge(Y,Z), compelled(X,Y), not edge(X,Z), not edge(Z,X).

(continues on next page)

19

https://networkx.github.io/documentation/stable/reference/classes/digraph.html
https://networkx.github.io/documentation/stable/reference/classes/digraph.html

pygobnilp Documentation

(continued from previous page)

%R2
compelled(X,Z) :- edge(X,Z), compelled(X,Y), compelled(Y,Z).
%R3
compelled(X,Z) :- edge(X,Z), compelled(Y1,Z), compelled(Y2,Z),

(edge(X,Y1);edge(Y1,X)), (edge(X,Y2);edge(Y2,X)).

This method uses the “semi-naive evaluation” algorithm for computing the relevant least Herbrand model,
which is the set of all the compelled edges.

Parameters compelled (iter) – Edges to set as compelled in addition to those involved in
immoralities.

connected(u, v)
Are u and v connected (in either direction)

Parameters

• u (str) – A node

• v (str) – A node

Returns Whether u and v are connected

Return type bool

cpdag_str()
Returns a textual representation of the CPDAG

Returns A textual representation of the CPDAG

Return type str

directed_arrow_colour = 'red'
Colour to indicate a directed arrow

directed_arrow_text = '->'
Text to indicate a directed arrow

minimal_ancestral_graph(nodes)
Find the minimal ancestral graph of self containing nodes

Parameters nodes (iter) – The nodes for the minimal ancestral graph

Returns The minimal ancestral graph

Return type network.DiGraph

plot(abbrev=True)
Generate and show a plot of the CPDAG/DAG

A DAG from the Markov equivalence class defined by the CPDAG is shown. Reversible and irreversible
arrows are distinguished by colour. By default the colours are black and red, respectively.

Parameters abbrev (int) – Whether to abbreviate variable names to first 3 characters.

satisfy_ci(a, b, s)
Does the DAG satisfy this conditional independence relation: a is independent of b conditional on s?

Parameters

• a (iter) – A set of BN variables

• b (iter) – A set of BN variables

• s (iter) – A set, possibly empty, of BN variables

20 Chapter 2. The BN class

pygobnilp Documentation

Returns A pair where the first element is a bool stating whether the given conditional indepen-
dence relation is satisfied and the second is the minimal ancestral graph containing a, b and
s.

Return type tuple

undirected_arrow_colour = 'black'
Colour to indicate a undirected edge

undirected_arrow_text = '-'
Text to indicate a undirected edge

21

pygobnilp Documentation

22 Chapter 2. The BN class

CHAPTER 3

The MN class

class pygobnilp.gobnilp.MN(*args, **kwargs)
Subclass of networkx.Graph. See documentation for networkx.Graph for all methods not documented here.

At present this class only implements the structure of a Markov network - an undirected graph

satisfy_ci(a, b, s)
Does the Markov network satisfy a _|_ b | s? i.e. is there a path from a node in a to a node in b which
avoids nodes in s?

This method does not check that a, b and s are disjoint or that a and b are non-empty.

Parameters

• a (iter) – A set of nodes in a Markov network

• b (iter) – A set of nodes in a Markov network

• s (iter) – A set of nodes in a Markov network

Returns Whether the Markov network satisfies a _|_ b | s

Return type bool

23

https://networkx.github.io/documentation/stable/reference/classes/graph.html
https://networkx.github.io/documentation/stable/reference/classes/graph.html

pygobnilp Documentation

24 Chapter 3. The MN class

CHAPTER 4

The Data class

class pygobnilp.scoring.Data
Complete data (either discrete or continuous)

This is an abstract class

rawdata()
The data without any information about variable names.

Returns The data

Return type numpy.ndarray

variables()

Returns The variable names

Return type list

varidx()

Returns Maps a variable name to its position in the list of variable names.

Return type dict

25

pygobnilp Documentation

26 Chapter 4. The Data class

CHAPTER 5

The DiscreteData class

class pygobnilp.scoring.DiscreteData(data_source, varnames=None, arities=None)
Bases: pygobnilp.scoring.Data

Complete discrete data

__init__(data_source, varnames=None, arities=None)
Initialises a DiscreteData object.

If data_source is a filename then it is assumed that:

1. All values are separated by whitespace

2. Empty lines are ignored

3. Comment lines start with a ‘#’

4. The first line is a header line stating the names of the variables

5. The second line states the arities of the variables

6. All other lines contain the actual data

Parameters

• data_source (str/array_like/Pandas.DataFrame) – Either a filename con-
taining the data or an array_like object or Pandas data frame containing it.

• varnames (iter) – Variable names corresponding to columns in the data. Ignored
if data_source is a filename or Pandas DataFrame (since they will supply the variable
names). Otherwise if not supplied (=None) then variables names will be: X1, X2, . . .

• arities (iter) – Arities for the variables corresponding to columns in the data. Ig-
nored if data_source is a filename or Pandas DataFrame (since they will supply the arities).
Otherwise if not supplied (=None) the arity for each variable will be set to the number of
distinct values observed for that variable in the data.

arities()

Returns The arities of the variables.

27

pygobnilp Documentation

Return type numpy.ndarray

arity(v)

Parameters v (str) – A variable name

Returns The arity of v

Return type int

data()
The data with all values converted to unsigned integers.

Returns The data

Return type pandas.DataFrame

data_length()

Returns The number of datapoints in the data

Return type int

make_contab_adtree(variables)
Compute a marginal contingency table from data or report that the desired contingency table would be too
big.

Parameters variables (iter) – The variables in the marginal contingency table.

Returns

1st element is of type ndarray: If the contingency table would have too many then the ar-
ray is empty (and the 2nd element of the tuple should be ignored) else an array of counts
of length equal to the product of the arities. Counts are in lexicographic order of the
joint instantiations of the columns (=variables) 2nd element: the ‘strides’ for each column
(=variable)

Return type tuple

28 Chapter 5. The DiscreteData class

CHAPTER 6

The AbsDiscreteLLScore class

class pygobnilp.scoring.AbsDiscreteLLScore(data_source, varnames=None, arities=None)
Bases: pygobnilp.scoring.DiscreteData

Abstract class for discrete log likelihood scores

entropy(variables)
Compute the entropy for the empirical distribution of some variables

Parameters variables (iter) – Variables

Returns The entropy for the empirical distribution of variables and the number of joint instan-
tiations of variables if not too big else None

ll_score(child, parents)
The fitted log-likelihood score for child having parents

In addition to the score the number of joint instantations of the parents is returned. If this number would
cause an overflow None is returned instead of the number.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns

(1) The fitted log-likelihood local score for the given family and

(2) the number of joint instantations of the parents (or None if too big)

Return type tuple

score(child, parents)
Return LL score minus complexity penalty for child having parents, and also upper bound on the score for
proper supersets.

To compute the penalty the number of joint instantations is multiplied by the arity of the child minus one.
This value is then multiplied by log(N)/2 for BIC and 1 for AIC.

29

pygobnilp Documentation

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Raises ValueError – If the number of joint instantations of the parents would cause an over-
flow when computing the penalty

Returns The local score for the given family and an upper bound on the local score for proper
supersets of parents

Return type tuple

30 Chapter 6. The AbsDiscreteLLScore class

CHAPTER 7

The DiscreteLL class

class pygobnilp.scoring.DiscreteLL(data)
Bases: pygobnilp.scoring.AbsDiscreteLLScore

__init__(data)
Initialises a DiscreteLL object.

Parameters data (DiscreteData) – data

score(child, parents)
Return the fitted log-likelihood score for child having parents, and also upper bound on the score for proper
supersets of parents.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns The fitted log-likelihood local score for the given family and an upper bound on the
local score for proper supersets of parents

Return type tuple

31

pygobnilp Documentation

32 Chapter 7. The DiscreteLL class

CHAPTER 8

The DiscreteBIC class

class pygobnilp.scoring.DiscreteBIC(data, k=1)
Bases: pygobnilp.scoring.AbsDiscreteLLScore

__init__(data, k=1)
Initialises a DiscreteBIC object.

Parameters

• data (DiscreteData) – data

• k (float) – Multiply standard BIC penalty by this amount, so increase for sparser net-
works

33

pygobnilp Documentation

34 Chapter 8. The DiscreteBIC class

CHAPTER 9

The DiscreteAIC class

class pygobnilp.scoring.DiscreteAIC(data, k=1)
Bases: pygobnilp.scoring.AbsDiscreteLLScore

__init__(data, k=1)
Initialises an DiscreteAIC object.

Parameters

• data (DiscreteData) – data

• k (float) – Multiply standard AIC penalty by this amount, so increase for sparser net-
works

35

pygobnilp Documentation

36 Chapter 9. The DiscreteAIC class

CHAPTER 10

The BDeu class

class pygobnilp.scoring.BDeu(data, alpha=1.0)
Bases: pygobnilp.scoring.DiscreteData

Discrete data with attributes and methods for BDeu scoring

__init__(data, alpha=1.0)
Initialises a BDeu object.

Parameters

• data (DiscreteData) – data

• alpha (float) – The equivalent sample size

alpha
The equivalent sample size used for BDeu scoring

Type float

bdeu_score_component(variables, alpha=None)
Compute the BDeu score component for a set of variables (from the current dataset).

The BDeu score for a child v having parents Pa is the BDeu score component for Pa subtracted from that
for v+Pa

Parameters

• variables (iter) – The names of the variables

• alpha (float) – The effective sample size parameter for the BDeu score. If not supplied
(=None) then the value of self.alpha is used.

Returns The BDeu score component.

Return type float

bdeu_scores(palim=None, pruning=True, alpha=None)
Exhaustively compute all BDeu scores for all child variables and all parent sets up to size palim. If
pruning delete those parent sets which have a subset with a better score. Return a dictionary dkt where
dkt[child][parents] = bdeu_score

37

pygobnilp Documentation

Parameters

• palim (int/None) – Limit on parent set size

• pruning (bool) – Whether to prune

• alpha (float) – ESS for BDeu score. If not supplied (=None) then the value of
self.alpha is used.

Returns dkt where dkt[child][parents] = bdeu_score

Return type dict

clear_cache()
Empty the cache of stored BDeu component scores

This should be called, for example, if new scores are being computed with a different alpha value

upper_bound_james(child, parents, alpha=None)
Compute an upper bound on proper supersets of parents

Parameters

• child (str) – Child variable.

• parents (iter) – Parent variables

• alpha (float) – ESS value for BDeu score. If not supplied (=None) then the value of
self.alpha is used.

Returns An upper bound on the local score for parent sets for child which are proper supersets
of parents

Return type float

38 Chapter 10. The BDeu class

CHAPTER 11

The ContinuousData class

class pygobnilp.scoring.ContinuousData(data, varnames=None, header=True, com-
ments=’#’, delimiter=None, standardise=False)

Bases: pygobnilp.scoring.Data

Complete continuous data

__init__(data, varnames=None, header=True, comments=’#’, delimiter=None, standardise=False)
Continuous data

Parameters

• data (numpy.ndarray/str) – The data (either as an array or a filename containing
the data)

• varnames (iterable/None) – The names of the variables. If not given (=None) then
if data is a file having the variable names as a header then these are used else the variables
are named X1, X2, X3, etc

• header (bool) – Ignored if data is not a filename. Whether a header containing variable
names is the first non-comment line in the file.

• comments (str) – Ignored if data is not a filename. Lines starting with this string are
treated as comments.

• delimiter (None/str) – Ignored if data is not a filename. String used to separate
values. If None then whitespace is used.

• standardise (bool) – Whether to standardise the date to have mean 0 and sd = 1.

data()
The data as a Pandas dataframe.

Returns The data

Return type pandas.DataFrame

39

pygobnilp Documentation

40 Chapter 11. The ContinuousData class

CHAPTER 12

The AbsGaussianLLScore class

class pygobnilp.scoring.AbsGaussianLLScore(data, varnames=None, header=True, com-
ments=’#’, delimiter=None, standard-
ise=False)

Bases: pygobnilp.scoring.ContinuousData

Abstract class for Gaussian log-likelihood scoring

gaussianll(variables)
Compute the Gaussian log-likelihood of some variables

Parameters variables (iter) – Variables

Returns The Gaussian log-likelihood of some variables

ll_score(child, parents)
The Gaussian log-likelhood score for a given family, plus the number of free parameters

Parameters

• child (str) – The child variable

• parents (iter) – The parents

Returns

First element of tuple is the Gaussian log-likelihood score for the family for current data
Second element is number of free parameters which is number of parents plus 1 (for
intercept)

Return type tuple

41

pygobnilp Documentation

42 Chapter 12. The AbsGaussianLLScore class

CHAPTER 13

The GaussianLL class

class pygobnilp.scoring.GaussianLL(data)
Bases: pygobnilp.scoring.AbsGaussianLLScore

__init__(data)
Initialises an GaussianLL object.

Parameters data (ContinuousData) – data

score(child, parents)
Return the fitted log-likelihood score for child having parents, and also upper bound on the score for proper
supersets of parents.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns The fitted log-likelihood local score for the given family and an upper bound on the
local score for proper supersets of parents

Return type tuple

43

pygobnilp Documentation

44 Chapter 13. The GaussianLL class

CHAPTER 14

The GaussianBIC class

class pygobnilp.scoring.GaussianBIC(data, k=1, sdresidparam=True)
Bases: pygobnilp.scoring.AbsGaussianLLScore

__init__(data, k=1, sdresidparam=True)
Initialises an GaussianBIC object.

Parameters

• data (ContinuousData) – data

• k (float) – Multiply standard BIC penalty by this amount, so increase for sparser net-
works

• sdresidparam (bool) – Whether to count the standard deviation of the residuals as a
parameter when computing the penalty

score(child, parents)
Return the fitted Gaussian BIC score for child having parents, and also upper bound on the score for proper
supersets of parents.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns The Gaussian BIC local score for the given family and an upper bound on the local
score for proper supersets of parents

Return type tuple

45

pygobnilp Documentation

46 Chapter 14. The GaussianBIC class

CHAPTER 15

The GaussianAIC class

class pygobnilp.scoring.GaussianAIC(data, k=1, sdresidparam=True)
Bases: pygobnilp.scoring.AbsGaussianLLScore

__init__(data, k=1, sdresidparam=True)
Initialises an GaussianAIC object.

Parameters

• data (ContinuousData) – data

• k (float) – Multiply standard AIC penalty by this amount, so increase for sparser net-
works

• sdresidparam (bool) – Whether to count the standard deviation of the residuals as a
parameter when computing the penalty

score(child, parents)
Return the fitted Gaussian AIC score for child having parents, and also upper bound on the score for proper
supersets of parents.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns The Gaussian AIC local score for the given family and an upper bound on the local
score for proper supersets of parents

Return type tuple

47

pygobnilp Documentation

48 Chapter 15. The GaussianAIC class

CHAPTER 16

The GaussianL0 class

class pygobnilp.scoring.GaussianL0(data, k=1)
Bases: pygobnilp.scoring.AbsGaussianLLScore

Implements score discussed in “l_0-Penalized Maximum Likelihood for Sparse Directed Acyclic Graphs” by
Sara van de Geer and Peter Buehlmann. Annals of Statistics 41(2):536-567, 2013.

__init__(data, k=1)
Initialises an GaussianL0 object.

Parameters

• data (ContinuousData) – data

• k (float) – Tuning parameter for L0 penalty. Called “lambda^2” in van de Geer and
Buehlmann

score(child, parents)
Return the fitted Gaussian AIC score for child having parents, and also upper bound on the score for proper
supersets of parents.

Parameters

• child (str) – The child variable

• parents (iter) – The parent variables

Returns The Gaussian AIC local score for the given family and an upper bound on the local
score for proper supersets of parents

Return type tuple

49

pygobnilp Documentation

50 Chapter 16. The GaussianL0 class

CHAPTER 17

The BGe class

class pygobnilp.scoring.BGe(data, nu=None, alpha_mu=1.0, alpha_omega=None,
prior_matrix=None)

Bases: pygobnilp.scoring.ContinuousData

Continuous data with attributes and methods for BGe scoring

__init__(data, nu=None, alpha_mu=1.0, alpha_omega=None, prior_matrix=None)
Create a BGe scoring object

Parameters

• data (ContinuousData) – The data

• nu (numpy.ndarray/None) – the mean vector for the normal part of the normal-
Wishart prior. If not given (=None), then the sample mean is used.

• alpha_mu (float) – imaginary sample size for the normal part of the normal-Wishart
prior.

• alpha_omega (int/None) – The degrees of freedom for the Wishart part of the
normal-Wishart prior. Must exceed p-1 where p is the number of variables. If not given
(=None) then alpha_omega is set to p+2.

• prior_matrix (numpy.ndarray/None) – The prior matrix ‘T’ for the Wishart part
of the normal-Wishart prior. If not given (=None), then this is set to t*I_n where t =
alpha_mu*(alpha_omega-n-1)/(alpha_mu+1)

bge_component(vs)
Compute the BGe component for given variables

The BGe score for a family child<-parents is the component for child+parents minus the component for
parents (+ a constant term which just depends on the number of parents).

Parameters vs (iter) – Variable names

Returns The BGe component for the given variables

Return type float

51

pygobnilp Documentation

bge_score(child, parents)
The BGe score for a given family, plus upper bound

Parameters

• child (str) – The child variable

• parents (iter) – The parents

Returns

First element of tuple isf the BGe score for the family for current data (using current hyperparameters)
Second element is an upper bound.

Return type tuple

52 Chapter 17. The BGe class

CHAPTER 18

Functions in the gobnilp module

Python version of GOBNILP

pygobnilp.gobnilp.from_bnlearn_modelstring(modelstring)
Return a DAG from a bnlearn modelstring

Parameters modelstring (str) – A bnlearn modelstring defining a DAG

Returns The DAG as a networkx Digraph

Return type networkx.DiGraph

pygobnilp.gobnilp.read_local_scores(f, verbose=False)
Read local scores from a named file, standard input or a file object, and return a dictionary dkt where
dkt[child][parentset] is the local score for the family child<-parentset

The file is assumed to be in “Jaakkola” format.

Parameters f (str/file object) – The file containing the local scores.

Returns Dictionary containing local scores

Return type dict

pygobnilp.gobnilp.mhs(subsets, ground_set=None)
Return a minimal hitting set for a set of subsets

A hitting set is a set of elements from the ground set that has non empty intersection with each of the given
subsets. A minimal hitting set is a hitting set with minimal cardinality. This function uses Gurobi to solve this
NP-hard problem.

Parameters

• subsets (iter) – The collection of subsets for which the minimal hitting set is sought.
These could be, for example, a list of lists of strings where the strings are elements of the
ground_set.

• ground_set (iter) – The ground set: each subset must be a subset of this ground set.
If missing (=None) then the ground set is the union of all the given subsets.

Raises ValueError – If Gurobi cannot solve the minimal hitting set problem.

53

pygobnilp Documentation

Returns A minimal hitting set which will be a subset of the ground set, or None if there is no hitting
set.

Return type list/None

54 Chapter 18. Functions in the gobnilp module

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

55

pygobnilp Documentation

56 Chapter 19. Indices and tables

Python Module Index

p
pygobnilp.gobnilp, 53

57

pygobnilp Documentation

58 Python Module Index

Index

Symbols
__init__() (pygobnilp.gobnilp.Gobnilp method), 1
__init__() (pygobnilp.scoring.BDeu method), 37
__init__() (pygobnilp.scoring.BGe method), 51
__init__() (pygobnilp.scoring.ContinuousData

method), 39
__init__() (pygobnilp.scoring.DiscreteAIC method),

35
__init__() (pygobnilp.scoring.DiscreteBIC method),

33
__init__() (pygobnilp.scoring.DiscreteData

method), 27
__init__() (pygobnilp.scoring.DiscreteLL method),

31
__init__() (pygobnilp.scoring.GaussianAIC

method), 47
__init__() (pygobnilp.scoring.GaussianBIC

method), 45
__init__() (pygobnilp.scoring.GaussianL0 method),

49
__init__() (pygobnilp.scoring.GaussianLL method),

43
__str__() (pygobnilp.gobnilp.BN method), 19

A
AbsDiscreteLLScore (class in pygobnilp.scoring),

29
AbsGaussianLLScore (class in pygobnilp.scoring),

41
absolute_generation_difference (pygob-

nilp.gobnilp.Gobnilp attribute), 1
add_basic_constraints() (pygob-

nilp.gobnilp.Gobnilp method), 1
add_basic_variables() (pygob-

nilp.gobnilp.Gobnilp method), 2
add_constraints_4b() (pygob-

nilp.gobnilp.Gobnilp method), 2
add_constraints_absgendiff() (pygob-

nilp.gobnilp.Gobnilp method), 2

add_constraints_arrow_adjacency() (py-
gobnilp.gobnilp.Gobnilp method), 2

add_constraints_arrow_family() (pygob-
nilp.gobnilp.Gobnilp method), 2

add_constraints_arrow_total_order() (py-
gobnilp.gobnilp.Gobnilp method), 2

add_constraints_bests() (pygob-
nilp.gobnilp.Gobnilp method), 2

add_constraints_choose_best_for_order()
(pygobnilp.gobnilp.Gobnilp method), 2

add_constraints_chordal() (pygob-
nilp.gobnilp.Gobnilp method), 2

add_constraints_clusters() (pygob-
nilp.gobnilp.Gobnilp method), 2

add_constraints_cycles() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_gen_arrow_indicator()
(pygobnilp.gobnilp.Gobnilp method), 3

add_constraints_gen_index_link() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_gendiff() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_genindex() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_kbranching() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_one_dag_per_MEC() (py-
gobnilp.gobnilp.Gobnilp method), 3

add_constraints_oneparentset() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_polytree() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_setpacking() (pygob-
nilp.gobnilp.Gobnilp method), 3

add_constraints_sumgen() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_constraints_total_order() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_forbidden_adjacency() (pygob-
nilp.gobnilp.Gobnilp method), 4

59

pygobnilp Documentation

add_forbidden_ancestor() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_forbidden_arrow() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_obligatory_adjacency() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_obligatory_ancestor() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_obligatory_arrow() (pygob-
nilp.gobnilp.Gobnilp method), 4

add_obligatory_conditional_independence()
(pygobnilp.gobnilp.Gobnilp method), 5

add_obligatory_independence() (pygob-
nilp.gobnilp.Gobnilp method), 5

add_variables_absgendiff() (pygob-
nilp.gobnilp.Gobnilp method), 5

add_variables_adjacency() (pygob-
nilp.gobnilp.Gobnilp method), 5

add_variables_arrow() (pygob-
nilp.gobnilp.Gobnilp method), 6

add_variables_family() (pygob-
nilp.gobnilp.Gobnilp method), 6

add_variables_gen() (pygobnilp.gobnilp.Gobnilp
method), 6

add_variables_gendiff() (pygob-
nilp.gobnilp.Gobnilp method), 6

add_variables_genindex() (pygob-
nilp.gobnilp.Gobnilp method), 6

add_variables_kbranching() (pygob-
nilp.gobnilp.Gobnilp method), 7

add_variables_kbranching_ch() (pygob-
nilp.gobnilp.Gobnilp method), 7

add_variables_total_order() (pygob-
nilp.gobnilp.Gobnilp method), 7

adjacency (pygobnilp.gobnilp.Gobnilp attribute), 7
adjacency_matrix() (pygobnilp.gobnilp.BN

method), 19
allowed_user_constypes (pygob-

nilp.gobnilp.Gobnilp attribute), 7
alpha (pygobnilp.scoring.BDeu attribute), 37
arities() (pygobnilp.scoring.DiscreteData method),

27
arity() (pygobnilp.scoring.DiscreteData method), 28
arrow (pygobnilp.gobnilp.Gobnilp attribute), 8

B
BDeu (class in pygobnilp.scoring), 37
bdeu_score_component() (pygob-

nilp.scoring.BDeu method), 37
bdeu_scores() (pygobnilp.scoring.BDeu method),

37
before() (pygobnilp.gobnilp.Gobnilp method), 8
between() (pygobnilp.gobnilp.Gobnilp method), 8
BGe (class in pygobnilp.scoring), 51

bge_component() (pygobnilp.scoring.BGe method),
51

bge_score() (pygobnilp.scoring.BGe method), 51
BN (class in pygobnilp.gobnilp), 19
bn_variables (pygobnilp.gobnilp.Gobnilp attribute),

8
bn_variables_index (pygobnilp.gobnilp.Gobnilp

attribute), 8
bnlearn_modelstring() (pygobnilp.gobnilp.BN

method), 19

C
child (pygobnilp.gobnilp.Gobnilp attribute), 8
clear_basic_model() (pygobnilp.gobnilp.Gobnilp

method), 8
clear_cache() (pygobnilp.scoring.BDeu method),

38
compute_compelled() (pygobnilp.gobnilp.BN

method), 19
connected() (pygobnilp.gobnilp.BN method), 20
ContinuousData (class in pygobnilp.scoring), 39
cpdag_str() (pygobnilp.gobnilp.BN method), 20

D
dag2mec() (pygobnilp.gobnilp.Gobnilp method), 8
Data (class in pygobnilp.scoring), 25
data (pygobnilp.gobnilp.Gobnilp attribute), 9
data() (pygobnilp.scoring.ContinuousData method),

39
data() (pygobnilp.scoring.DiscreteData method), 28
data_arities (pygobnilp.gobnilp.Gobnilp attribute),

9
data_length() (pygobnilp.scoring.DiscreteData

method), 28
data_variables (pygobnilp.gobnilp.Gobnilp at-

tribute), 9
directed_arrow_colour (pygobnilp.gobnilp.BN

attribute), 20
directed_arrow_text (pygobnilp.gobnilp.BN at-

tribute), 20
DiscreteAIC (class in pygobnilp.scoring), 35
DiscreteBIC (class in pygobnilp.scoring), 33
DiscreteData (class in pygobnilp.scoring), 27
DiscreteLL (class in pygobnilp.scoring), 31

E
entropy() (pygobnilp.scoring.AbsDiscreteLLScore

method), 29

F
family (pygobnilp.gobnilp.Gobnilp attribute), 9
family_list (pygobnilp.gobnilp.Gobnilp attribute), 9
family_scores (pygobnilp.gobnilp.Gobnilp at-

tribute), 9

60 Index

pygobnilp Documentation

forbidden_adjacencies (pygob-
nilp.gobnilp.Gobnilp attribute), 10

forbidden_ancestors (pygobnilp.gobnilp.Gobnilp
attribute), 10

forbidden_arrows (pygobnilp.gobnilp.Gobnilp at-
tribute), 10

from_bnlearn_modelstring() (in module py-
gobnilp.gobnilp), 53

G
GaussianAIC (class in pygobnilp.scoring), 47
GaussianBIC (class in pygobnilp.scoring), 45
GaussianL0 (class in pygobnilp.scoring), 49
GaussianLL (class in pygobnilp.scoring), 43
gaussianll() (pygob-

nilp.scoring.AbsGaussianLLScore method),
41

generation (pygobnilp.gobnilp.Gobnilp attribute), 10
generation_difference (pygob-

nilp.gobnilp.Gobnilp attribute), 10
generation_index (pygobnilp.gobnilp.Gobnilp at-

tribute), 11
get_family_index (pygobnilp.gobnilp.Gobnilp at-

tribute), 11
Gobnilp (class in pygobnilp.gobnilp), 1
Gobnilp.StageError, 1
Gobnilp.UserConstraintError, 1
gobnilp_optimize() (pygobnilp.gobnilp.Gobnilp

method), 11

I
input_local_scores() (pygob-

nilp.gobnilp.Gobnilp method), 11
input_user_conss() (pygobnilp.gobnilp.Gobnilp

method), 11
input_user_conss_from_dict() (pygob-

nilp.gobnilp.Gobnilp method), 12

L
learn() (pygobnilp.gobnilp.Gobnilp method), 12
learned_bn (pygobnilp.gobnilp.Gobnilp attribute), 14
learned_bns (pygobnilp.gobnilp.Gobnilp attribute),

14
learned_scores (pygobnilp.gobnilp.Gobnilp at-

tribute), 14
ll_score() (pygobnilp.scoring.AbsDiscreteLLScore

method), 29
ll_score() (pygobnilp.scoring.AbsGaussianLLScore

method), 41
local_scores (pygobnilp.gobnilp.Gobnilp attribute),

15

M
make_basic_model() (pygobnilp.gobnilp.Gobnilp

method), 15
make_contab_adtree() (pygob-

nilp.scoring.DiscreteData method), 28
mec2dag() (pygobnilp.gobnilp.Gobnilp method), 15
mhs() (in module pygobnilp.gobnilp), 53
minimal_ancestral_graph() (pygob-

nilp.gobnilp.BN method), 20
MN (class in pygobnilp.gobnilp), 23

N
n (pygobnilp.gobnilp.Gobnilp attribute), 15

O
obligatory_adjacencies (pygob-

nilp.gobnilp.Gobnilp attribute), 15
obligatory_ancestors (pygob-

nilp.gobnilp.Gobnilp attribute), 15
obligatory_arrows (pygobnilp.gobnilp.Gobnilp at-

tribute), 16
obligatory_conditional_independences

(pygobnilp.gobnilp.Gobnilp attribute), 16
ordered_parentsets (pygobnilp.gobnilp.Gobnilp

attribute), 16

P
parents (pygobnilp.gobnilp.Gobnilp attribute), 16
plot() (pygobnilp.gobnilp.BN method), 20
pygobnilp.gobnilp (module), 53

R
rawdata (pygobnilp.gobnilp.Gobnilp attribute), 16
rawdata() (pygobnilp.scoring.Data method), 25
read_local_scores() (in module pygob-

nilp.gobnilp), 53
return_local_scores() (pygob-

nilp.gobnilp.Gobnilp method), 16

S
satisfy_ci() (pygobnilp.gobnilp.BN method), 20
satisfy_ci() (pygobnilp.gobnilp.MN method), 23
score() (pygobnilp.scoring.AbsDiscreteLLScore

method), 29
score() (pygobnilp.scoring.DiscreteLL method), 31
score() (pygobnilp.scoring.GaussianAIC method), 47
score() (pygobnilp.scoring.GaussianBIC method), 45
score() (pygobnilp.scoring.GaussianL0 method), 49
score() (pygobnilp.scoring.GaussianLL method), 43
set_bn_variables() (pygobnilp.gobnilp.Gobnilp

method), 17
set_stage() (pygobnilp.gobnilp.Gobnilp method), 17

Index 61

pygobnilp Documentation

set_starts() (pygobnilp.gobnilp.Gobnilp method),
17

sol2fvs() (pygobnilp.gobnilp.Gobnilp method), 17
stage (pygobnilp.gobnilp.Gobnilp attribute), 17
stages (pygobnilp.gobnilp.Gobnilp attribute), 17
stages_set (pygobnilp.gobnilp.Gobnilp attribute), 18

T
total_order (pygobnilp.gobnilp.Gobnilp attribute),

18

U
undirected_arrow_colour (pygob-

nilp.gobnilp.BN attribute), 21
undirected_arrow_text (pygobnilp.gobnilp.BN

attribute), 21
upper_bound_james() (pygobnilp.scoring.BDeu

method), 38

V
variables() (pygobnilp.scoring.Data method), 25
varidx() (pygobnilp.scoring.Data method), 25

W
write_local_scores() (pygob-

nilp.gobnilp.Gobnilp method), 18

62 Index

	The Gobnilp class
	The BN class
	The MN class
	The Data class
	The DiscreteData class
	The AbsDiscreteLLScore class
	The DiscreteLL class
	The DiscreteBIC class
	The DiscreteAIC class
	The BDeu class
	The ContinuousData class
	The AbsGaussianLLScore class
	The GaussianLL class
	The GaussianBIC class
	The GaussianAIC class
	The GaussianL0 class
	The BGe class
	Functions in the gobnilp module
	Indices and tables
	Python Module Index
	Index

